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Abstract
The most appropriate next step in depression treatment after the initial treatment fails is unclear. This study explores the suit-
ability of the Markov decision process for optimizing sequential treatment decisions for depression. We conducted a formal 
comparison of a Markov decision process approach and mainstream state-transition models as used in health economic deci-
sion analysis to clarify differences in the model structure. We performed two reviews: the first to identify existing applications 
of the Markov decision process in the field of healthcare and the second to identify existing health economic models for 
depression. We then illustrated the application of a Markov decision process by reformulating an existing health economic 
model. This provided input for discussing the suitability of a Markov decision process for solving sequential treatment deci-
sions in depression. The Markov decision process and state-transition models differed in terms of flexibility in modeling 
actions and rewards. In all, 23 applications of a Markov decision process within the context of somatic disease were included, 
16 of which concerned sequential treatment decisions. Most existing health economic models relating to depression have 
a state-transition structure. The example application replicated the health economic model and enabled additional capacity 
to make dynamic comparisons of more interventions over time than was possible with traditional state-transition models. 
Markov decision processes have been successfully applied to address sequential treatment-decision problems, although the 
results have been published mostly in economics journals that are not related to healthcare. One advantage of a Markov deci-
sion process compared with state-transition models is that it allows extended action space: the possibility of making dynamic 
comparisons of different treatments over time. Within the context of depression, although existing state-transition models 
are too basic to evaluate sequential treatment decisions, the assumptions of a Markov decision process could be satisfied. 
The Markov decision process could therefore serve as a powerful model for optimizing sequential treatment in depression. 
This would require a sufficiently elaborate state-transition model at the cohort or patient level.
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1 Introduction

Depression is one of the most burdensome and costly of all 
mental health disorders, with a worldwide average lifetime 
and 12-month prevalence of 14.6% and 5.5%, respectively 
[1]. People with depression experience impairment in daily 
life, resulting in a quality of life that is lower than in the 
general population [2]. According to WHO projections, 
depression will rank first in terms of disability-adjusted life-
years lost by 2030 [3]. The economic burden of depression 
is also high, having been estimated at US$326.2 billion for 
the United States in 2018 (price level 2020) [4]. Depression 
thus imposes a high burden on society, the healthcare sys-
tem, and individuals [5]. To reduce this burden and support 
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Key Points for Decision Makers 

This article demonstrates that the Markov decision pro-
cess (MDP) has the potential to steer the optimization of 
sequential treatment to facilitate personalized treatment 
decisions.

This article specifically identifies applications of the 
MDP that have been used to address sequential deci-
sion problems in somatic diseases. The results indicate 
that the MDP could potentially be useful for addressing 
sequential decision making in depression.

Our study reveals that, although the structure of the 
state-transition model could potentially be suitable for 
extension into the MDP model, doing so would require a 
sufficiently extensive model.

[14]. Steimle and Denton [21] argue that the MDP model is 
essential for guiding decision makers in treatment decisions 
for chronic diseases, as it provides an analytical framework 
for studying sequential decisions. The framework is very 
general, however, and not geared toward specific diseases, 
nor does it contain actual input data. The feasibility of its 
actual application is therefore unclear. For this reason, two 
questions are worth exploring. The first concerns the iden-
tification of any actual applications of MDP within the field 
of healthcare, and the second concerns whether MDP could 
be fruitfully applied to address treatment decision issues in 
depression.

Given the state of knowledge as described above, the pri-
mary aim of this article was to examine how MDP has been 
implemented by reviewing all existing applications of MDP 
to medical decision making for diseases. It also provides a 
review of existing HE models of depression and an analy-
sis of the potential of MDP to support sequential treatment 
decisions in depression, based on the reformulation of an 
existing HE model of depression and an assessment of the 
suitability of MDP.

2  Background

State-transition models (STMs) are structured around a set 
of mutually exclusive and collectively exhaustive health 
states, transitions, initial-state vectors, transition probabili-
ties, cycle lengths, and state values (‘rewards’), which con-
ceptualize a decision problem in terms of a set of health (or 
other) states and transitions among these states [22]. In this 
background section, the elements of an MDP are defined, 
starting with and compared with their analogues in STMs. 
The basic definition of an MDP comprises five elements 
( T,S,As, P(.│s, a),rt(s, a) ), described using a standard nota-
tion [23]. To build an MDP model, the decision epochs 
( T = 1, 2,⋯N ), state space ( S ), action space ( As ), transi-
tion probabilities (P(.|s, a) ), and rewards ( rt(s, a)) should be 
defined. All elements of an MDP are listed in Table 1, in 
comparison with the corresponding elements in a cohort-
level STM.

As demonstrated by this comparison, an MDP can be 
regarded as an extension of an STM. The difference is the 
addition of actions (e.g., stop treatment, remain on cur-
rent treatment, change treatment) and rewards, which may 
depend on these actions, with transition probabilities being 
conditional on both current state and current action. Con-
versely, if each state has only one action and if all rewards 
depend only on the state, the MDP reduces to an STM. Note 
that most STMs that have been applied to actual HE evalu-
ations deviate in some way from the pure Markov property 
(e.g., because mortality depends on age or because some 
pay-offs vary according to both state and model run-time).

appropriate treatment selection, increasing attention is being 
directed to studies comparing different treatments regarding 
health outcomes and cost effectiveness. Most previous stud-
ies have examined only limited numbers of different treat-
ments (e.g., psychotherapies, pharmacotherapy, brain stim-
ulation therapy [6–8], genetic testing) to support targeted 
therapy [9], using different health economic (HE) models. 
While such studies have supported choices between differ-
ent treatments, they have yielded little insight into treatment 
duration or sequential treatment choices.

To date, no consensus has been reached concerning how 
long (e.g., days, weeks, months, years) a patient should be 
treated with a specific treatment for depression [10]. Fur-
thermore, it is unclear how consecutive treatments should 
be selected when initial treatment is not successful. One 
widespread approach is stepped care: a gradual increase in 
the intensity of treatments [11]. More recently, however, 
scholars have been directing greater attention to matched 
care [12], which implies that initial and sequential treatment 
steps are carefully adjusted to the personal characteristics 
and treatment history of the individual. Such adjustments are 
usually pragmatic and based on general guidelines, although 
they might also be informed by data-driven optimization.

The Markov decision process (MDP) is a mathemati-
cal model for sequential decisions and dynamic optimiza-
tion [13], which generalizes standard Markov models by 
embedding a sequential decision process into the model and 
allowing multiple decisions in multiple time periods [14]. 
To support optimization, MDP models have been applied to 
address a variety of industrial operation problems, including 
cost-effective maintenance [15–18], electricity supply [19], 
and dynamic pricing [20]. Recent studies have demonstrated 
that MDP has potential to support clinical decision making 
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It stands to reason that no specific corresponding analogy 
exists for the MDP actions and decision rules, given that 
STMs are applied in HE evaluations primarily to compare 
two or more pre-specified strategies or scenarios. In contrast, 
states (as applied in STMs) are very similar to the states 
distinguished in MDPs. The decision epochs of an MDP 
are a set of points at which decisions are made, and they 
are analogous to the cycle time in standard Markov models.

While cohort-level Markov models can thus be extended 
into an MDP at the aggregate level, it is also possible to 
define an MDP with parameters that depend on individual 
characteristics and to define optimal strategies that vary by 
individual. Such patient-level MDPs could be regarded as 
an extension of patient-level STMs, sometimes also called 
microsimulation models, or patient-level Markov models. 
Finally, MDPs can be defined in continuous rather than dis-
crete time, and with a finite or infinite time horizon [24].

3  Methods

We performed two reviews, the first to identify existing 
applications of the MDP in treatment of disease and the 
second to identify existing HE models in depression. Data 
were extracted from MDP applications to articulate assump-
tions and requirements for the MDP. We then illustrated 
the elements of an MDP by reformulating an existing HE 
model and examining its added value. This served as input 
for discussing the suitability of an MDP for solving sequen-
tial treatment decisions in depression. The methodological 
framework of the present study is displayed in Fig. 1. The 
protocols for the two reviews were registered in the Open 
Science Framework.

3.1  Review of Markov Decision Process (MDP) 
and Health Economic (HE) Models

The two reviews followed the guidelines for Preferred 
Reporting Items for Systematic reviews and Meta-Analyses 
extension for Scoping Reviews (PRISMA ScR) (see Appen-
dix Part 1 in the electronic supplementary material [ESM] 
for the checklist).

The search strings for existing applications of MDP and 
HE decision models were designed to identify relevant liter-
ature (see Appendix Part 2 in the ESM). Web of Science and 
PubMed were searched in September 2021. An article was 
eligible for inclusion only if it addressed the treatment of 
diseases rather than the optimization of hospital operations, 
surgical techniques, or the application of healthcare devices 
using MDP. In the review of HE models for depression, pub-
lications were eligible for inclusion only if they concerned 
the economic evaluation of treatments for depression. Both 
reviews excluded papers published in languages other than 
English, meeting abstracts, reviews, and publications that 
were not available in full text.

After eliminating duplicates, two reviewers (F.L, X.L) 
independently screened titles and abstracts. Disagreements 
were initially addressed through discussion and consensus. 
Any remaining disputes between the two reviewers were 
solved by appealing to a third author (T.F). Two authors 
(F.L, X.L) abstracted data on general study characteristics 
using a data extraction form.

For the MDP review, data extraction focused on the 
structure of the MDP in each of the applications to evalu-
ate the assumptions and requirements of MDP. The follow-
ing elements were extracted: time horizon, disease, state 
space, action space, reward function, and main perspective. 

Table 1  Elements of a Markov decision process (MDP) and comparable structures in a cohort-level state-transition model (STM)

MDP element Definition Analogous STM component

Decision epoch The time at which decisions are made Cycle time (decisions usually made only in Cycle 1/before 
the start of the model, by defining different scenarios)

State space Set of mutually exclusive, collectively exhaustive condi-
tions that describe the possible state of the model

States

Action space Set of possible decisions that can be made at each deci-
sion epoch

No specific analogy

Transition probabilities Probability of each possible state of the system in the fol-
lowing period (conditional on decision and current state)

Transition probabilities (conditional on current state and 
scenario)

Reward function The immediate benefits of taking a particular decision at 
each state

Pay-offs: costs and utilities linked to each state

Decision rule A specified decision for each possible state at a specific 
epoch

No specific analogy

Policy A sequence of decision rules for all epochs following the 
beginning time point

The treatment strategy is always defined a priori



1018 F. Li et al.

The authors also attempted to extract the requirements and 
assumptions of MDP when applied in healthcare settings 
based on the studies identified. Both general and specific 
assumptions related to specific applications were included.

The review of HE models for depression started with the 
categorization of model structures. Given our interest in the 
structure of STMs and whether this structure could be used 
as a starting point for MDPs, we retained only models that 
are structured as a set of health (or other) states and transi-
tions among these states. For these studies, further informa-
tion on each model was collected. General study charac-
teristics were authors and year, treatment types, and their 
comparators. Model characteristics were health states, time 
horizon, cycle length, and aim.

3.2  Illustration of Elements of an MDP Using 
a Reformulation of an Existing HE Model 
into an MDP

We use a case study to illustrate how a real-world HE deci-
sion problem can be reformulated as an MDP. The required 
model elements (e.g., states, transition probabilities, costs, 
quality-of-life weights) were first extracted from an existing 
HE model. We then translated the HE model to an MDP 
formulation based on the information collected. To inves-
tigate the consistency of conclusions between the existing 
HE model and the MDP approach, we compared the results 
from the existing HE model to those of the MDP model. 
Finally, we discussed the potential added value of MDP after 
reformulation.

3.3  Assessment of the Suitability of MDP 
for Optimizing Sequential Treatment 
in Depression

After comparing the findings of the two reviews to clar-
ify the assumptions about the use of MDP in depression, 
we examined whether they might be satisfied. We then 

discussed how to define MDP structure when used in depres-
sion. In this step, we also discussed challenges associated 
with using MDP to optimize sequential treatment decisions 
for depression.

4  Results

4.1  Overview of Existing Applications of MDP 
in Treatment of Disease

All existing applications of MDP to optimize treatment 
concern somatic disease. As shown in Fig. 2, we selected a 
total of 23 applications of MDP for inclusion in the review. 
An overview of the characteristics of these applications is 
provided in Table 2.

Researchers have applied MDP models to optimize initial 
treatment selection [25, 26] and the timing of transplantation 
[27, 28], to compare the effectiveness of different combina-
tions of treatment [29], to optimize screening policy [30], 
and to prevent disease-related complications [31]. However, 
16 studies concern the optimization of treatment decisions 
[32–47]. Five studies use the MDP to optimize treatment 
decisions for cancer [30, 35, 39, 42, 43], five focus on opti-
mizing the treatment of diabetes mellitus [31–34, 41], and 
the remaining (N = 13) studies are concerned with liver dis-
eases [27, 28], high blood pressure/hypertension [37, 40], 
hepatitis C [44], atherosclerotic cardiovascular disease [45], 
ischemic heart disease [29, 36], atrial fibrillation [38], ane-
mia [47], tuberculosis [46], aneurysms [25], and stroke [26].

The MDP approach has been used to determine the opti-
mal sequence of chemotherapy and radiation therapy [35, 
39, 42, 43] and to select the appropriate drugs for anemia 
[47], tuberculosis [46], atherosclerotic cardiovascular dis-
ease [45], and hepatitis C [44]. In studies by Meng et al. 
[32], Mason et al. [33], and Shifrin and Siegelmann [41], 
MDP is applied to optimize the management of diabetes 
medication for glycemic control. An MDP-based treatment 

Fig. 1  Methodological frame-
work of the present study. MDP 
Markov decision process, HE 
health economic
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recommendation system for diabetes medication steps has 
also been proposed by Oh et al. [34]. In studies by Choi 
et al. [37] and Schell et al. [40], MDP is used to develop 
an automated strategy to select suitable anti-hypertensive 
medications and dosages for patients, thus accounting for 
their heterogeneity. In contrast, the articles by Ibrahim et al. 
[38] and Hauskrecht and Fraser [36] are primarily theoretical 
and do not apply MDP to any actual clinical settings.

Of the studies identified, 11 address treatment decisions 
at the individual level, especially in applications for diabetes 
and ischemic heart disease [32, 33, 35–38, 40, 41, 44, 45, 

47]. They apply risk engines using individual-level covari-
ates (e.g., the Framingham model [48] and the UKPDS risk 
engine [49]) to calculate transition probabilities between 
states with different treatments. In the gastro-esophageal 
cancer treatment application, the transition probability is 
calculated individually using the expected toxicity level and 
demographic variables [35]. In contrast, for the hyperten-
sion application, the authors examined several individual-
level covariates, including 11 variables used as treatment 
effect modifiers to modify baseline risks [37, 40]. Ibrahim 
et al. [38] include different transition probabilities when 

Fig. 2  Flow chart of study 
selection for MDP applications 
in the field of healthcare. MDP 
Markov decision process
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analyzing/optimizing the length of the initiation period of 
anticoagulation therapy.

In all, 20 studies concern MDPs with a finite time hori-
zon, while another three articles involve MDPs with an infi-
nite time horizon [27, 28, 36]. Infinite-horizon MPDs do 
not require a pre-defined time horizon. For most algorithms 
to work and result in a well-defined optimal solution, how-
ever, these models do require a boundedness condition on 
the value function.

Most studies define states according to clinically relevant 
variables and discretely, with numbers ranging widely from 
4 to 8492 states (see Table 1), except for one study [36] that 
reports 11 state variables rather than listing all the states. 
Nine studies consider three actions [25, 28, 30, 34, 37, 39, 
43, 45, 46], while six consider two actions [27, 31–33, 41, 
44], four use five actions [29, 35, 38, 40], three use four 
actions [26, 36, 47], and one does not specify the number of 
actions [42]. In most cases, larger numbers of actions distin-
guished are associated with greater complexity in the pro-
cess of finding an optimal solution. Rewards most frequently 
consist exclusively of health benefits, with more than half 
of the studies having optimal treatment outcomes as their 
objective [25–29, 31, 32, 34, 37, 38, 40–45, 47]. Only three 
studies focus on minimizing costs [30, 35, 36], and three 
other studies use the combination of treatment outcomes and 
costs (or net benefits) as the reward function [33, 39, 46].

4.1.1  Assumptions and Requirements of MDP

An MDP model explicates a stochastic control process 
and formally consists of four essential elements: states, 
actions, transition probabilities, and rewards. Three com-
mon assumptions of all studies in clinical settings are as 
follows: (i) both states and action space are a finite set; (ii) 
an absorbing state is included in the Markov process, either 
death or severe functional impairment, which is essential for 
any finite-horizon MDP to obtain an optimal solution; (iii) 
MDP states are observable and mutually exclusive. Several 
authors make additional assumptions based on the charac-
teristics of specific research questions. For example, Alagoz 
et al. [28] assume that the reward function is positive and 
non-increasing in a particular state after a cadaveric liver 
transplant action. This implies that the intermediate reward 
does not increase as the patient deteriorates. For diabetes, 
Eghbali-Zarch et al. [31] assume that the treatment decision 
of insulin is irreversible (implying that, once patients initiate 
insulin, they remain on it until the end of the time horizon), 
thus avoiding optimal strategies that would not correspond 
to clinical practice. Similarly, to mimic current clinical prac-
tice, Choi et al. [37] exclude a dosage decrease in the action 
space. In the study by Kim et al. [42], a non-zero dose is 
assumed in each treatment. In this sense, additional assump-
tions could be added to the model to accommodate current 

treatment practice or to avoid clinically unrealistic or unac-
ceptable solutions.

4.2  Overview of Existing HE Decision Models 
for Depression

In all, we identified 63 existing HE decision models in the 
review of existing HE models, more than half of which are 
STMs (Appendix Fig. S1 in ESM). The number of model 
states distinguished varies from three to eight (Appendix 
Table S1 in ESM). In 21 studies, states are defined by disease 
severity in terms of clinically relevant criteria (e.g., symp-
tom scores for depression). Only five studies have a lifetime 
time horizon [50–54]. In the remaining studies, except for 
one study with a very short time horizon (3 months) [55] 
and one with a relatively long time horizon (11 years) [56], 
the time horizon varies between 1 and 5 years [6–9, 57–77].

The models focus predominantly on five categories of 
interventions (Appendix Fig. S2 in ESM). In all, 16 stud-
ies use a healthcare perspective [7, 8, 50–52, 63, 65–68, 
70–73, 75, 76], while nine adopt a societal perspective [6, 
9, 53, 55, 56, 59, 60, 64, 77]. Only two studies use the payer 
perspective [57, 62], and the rest present results for both the 
healthcare and societal perspectives [54, 58, 61, 69, 74].

4.3  Illustration of Elements of an MDP Using 
a Reformulation of an Existing HE Model 
into an MDP

We applied the MDP to reproduce the research carried out 
by Ssegonja et al. [74]. This study was chosen for three rea-
sons. First, it involves a relatively small number of states, 
such that it is easy for readers to understand and suitable 
for use as an example. Second, the study reports all model 
parameters clearly, providing a basis for reformulating it into 
MDP. Finally, the model structure of a pure STM (rather 
than a combination of Markov and decision tree) facilitates 
reformulation.

The study by Ssegonja et al. [74] uses a cost-effectiveness 
analysis at the cohort level to compare a group-based cog-
nitive behavior therapy (GB-CBT) preventive intervention 
for depression with a non-intervention option in Sweden for 
adolescents, using an STM. The transition from subthreshold 
depression to depression and from subthreshold to healthy 
was affected by GB-CBT, as illustrated in Fig. 3.

Translating this decision problem to an MDP formula-
tion, Fig. 4 displays the process of reformulating an existing 
study into an MDP model, designed to explore the best deci-
sion between treating adolescents with GB-CBT and leaving 
them untreated. The possible decisions are represented by 
the actions (treating with GB-CBT or leaving untreated).

According to the original study, the γ value was 0.97. The 
Bellman optimality equation was used to find the solution 
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[78]. Based on the optimal state value function v∗(s) at the 
following decision epoch, the optimal action-value func-
tion q∗

(
st, a

)
 was calculated, as shown in Fig. 4. The model 

was coded in Python software 3.3.8 using the MDP toolbox 
[79]. In keeping with the uncertainty analysis in the origi-
nal study, we also considered different willingness-to-pay 
(WTP) thresholds. The values for each state are presented in 
Table 3, along with different WTP thresholds. Note that, for 
this simple example, the optimization could be simplified to 
decide whether GB-CBT should be implemented in the first 
epoch, given that the action space for each decision epoch 
except the first is confined to a single action.

At the WTP threshold value of US$20,000/QALY, the 
q∗(subthreshold, intervention) was US$134,000 at t = 1, and 
the q∗(subthreshold, nointervention) was US$131,000. The 
optimized value function when choosing to implement GB-
CBT is therefore higher than for the alternative strategy, and 
the former is thus optimal. This means that choosing the 
intervention brings a net profit. We therefore conclude that 
adolescents can benefit from the GB-CBT preventive inter-
ventions and that it can also generate good value for money, 
as compared with leaving adolescents with subthreshold 
depression untreated. This conclusion is consistent with 
Ssegonja et al.

In contrast to the original HE model, the MDP structure 
allows for more flexibility. We could now extend the action 
space and consider other strategies (e.g., starting the preven-
tive treatment after a person has been in the subthreshold 
space for one period). This could be achieved by separating 
more minor decision epochs that would allow interventions 
to be performed at more appropriate times, as well as by 
increasing the number of actions, making it possible to com-
pare multiple preventive treatments simultaneously. In addi-
tion, the comparison between different strategies is based on 
the reward function, and it might therefore be relatively easy 
to vary the weight assigned to health outcomes or costs to 
investigate impact on the optimal decision.

4.4  Assessment of the Suitability of MDP 
for Solving Sequential Treatment Decisions 
in Depression

The Markov property is a precondition for any MDP. To 
assess the suitability of MDP for depression, it is important 
to recognize two important assumptions of an MDP. First, 
the state space and the action space are finite. A state explo-
sion might occur, especially in a state-transition system with 
many processes or a complex data structure. This means that 

Fig. 3  Simplification of model 
structure in the original paper 
[74]
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an infinite number of states could trap the model in an end-
less loop, causing it to fail in finding the optimal solution. 
All existing HE models for depression consist of a finite 
number of states (varying from three to eight), indicating 
that the application of MDP to optimizing sequential treat-
ment decisions for depression would probably not result in 
a state explosion problem. The second assumption is that 
MDP states are observable, which essentially corresponds 
to the situation in which we know with certainty the disease 
from which the patient is suffering at all epochs.

As for other diseases, the five core elements of MDP for 
depression are decision epoch, state space, action space, 
reward, and transition probabilities. The decision epoch of 
the MDP structure could be the beginning of each treat-
ment cycle, with a decision made at every clinical visit. In 
practice, this would depend on the frequency of visits. The 
MDP states could be defined by depression severity. Depres-
sion differs from many somatic illnesses, in which states are 
distinguished according to clinical parameters (e.g., blood 
glucose level in diabetes mellitus). Such clinical parameters 

Fig. 4  Process of the Markov decision process (MDP) model based 
on the original model by Ssegonja et al. [74]. Note: s denotes the cur-
rent state; s′ denotes the next state; Rt denotes the reward at time t. 
The variable γ is a discount factor. Q(st,at) indicates the monetary 
value of quality-adjusted life-years in the state s at time t, taking 
the decision a ; C(st,at) indicates the total cost in the state s at time t, 

taking the decision a ; v(s) denotes state value function, which is the 
expected monetary return starting from state s; q(st, a) indicates the 
expected monetary return starting from state s, taking action a at time 
t; v∗(s) indicates the optimal value function over all decisions in the 
state s ; q∗(st, a) is the optimal value function for action a in the state 
s ; t is measured in years

Table 3  Value of different states with different willingness-to-pay thresholds

WTP = 20,000 q∗(subthreshold, intervention) = 134 q∗(subthreshold, nointervention) = 131
v∗(s)(*US$1000)
Healthy Subthreshold depression Depres-

sion
Recovered Remission

137 122 −52 −12 32
WTP = 60,000 q∗(subthreshold, intervention) = 440 q∗(subthreshold, nointervention) = 435
v∗(s)(*US$1000)
Healthy Subthreshold depression Depres-

sion
Recovered Remission

430 407 160 216 280
WTP = 100,000 q∗(subthreshold, intervention) = 747 q∗(subthreshold, nointervention) = 738
v∗(s)(*US$1000)
Healthy Subthreshold depression Depres-

sion
Recovered Remission

722 692 372 445 528
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are not easily defined for depression. As illustrated by the 
review of HE models, the states in most studies concerning 
depression are defined by disease severity in terms of clini-
cally relevant criteria (e.g., symptom scores for depression).

Regarding the action space, depression interventions can 
largely be divided into two categories: psychotherapies and 
medications. The action/treatment choice for a patient at a 
specific point in time could thus be simplified to no inter-
vention, psychotherapy, medication use, or both. In reality, 
however, many different medications and psychotherapies 
might be distinguished, and different intensities (dosages and 
hours of therapy per unit of time) and combinations could 
be considered. Finally, QALYs, costs, or their combination 
could serve as a reward, depending on the objective of the 
decision maker.

The heterogeneity of patients with depression could 
also be integrated into the MDP, allowing for individuals 
experiencing different trajectories. In theory, therefore, it 
would be feasible to use MDP to optimize the sequential 
treatment decision at the individual level. For depression, 
individual-level covariates (including age, gender, baseline 
symptomatology, educational level, or socio-economic posi-
tion) could be used to calculate different transition prob-
abilities between states with specific treatment. This would 
nevertheless require sufficient data on how these covariates 
affect transition probabilities.

Although MDP proved to be suitable for supporting 
sequential treatment decisions for depression, several issues 
continue to require careful consideration. For example, (i) 
how many states to distinguish and how to define them based 
on severity; (ii) how to decide on the proper granularity of 
the treatment choices and decision epochs considered; (iii) 
which individual characteristics are important to include 
when optimizing at the individual level; (iv) how to achieve 
a balance between the level of detail in treatment specifica-
tion and the feasibility of optimization.

5  Discussion

Markov decision processes can be regarded as an extension 
of a state-transition model, which is the most frequently 
applied model structure in health economic evaluations. The 
STM model structure is based on the Markov chain, which is 
also the underlying structure in MDPs. In contrast to STMs, 
however, MDPs include actions and rewards, thereby allow-
ing greater flexibility in defining treatment strategies and 
enhancing the optimization of these strategies. To optimize 
sequential treatment decisions in depression, the MDP struc-
ture is relevant and interesting for further pursuit. The cur-
rent study identifies 23 applications of MDP in healthcare, 
16 of which use MDP to solve sequential treatment decisions 
in somatic disease. This demonstrates how MDP has been 

used to address treatment issues related to somatic disease. 
In addition, the reformulation of the existing HE model pro-
vides insight into how MDP can be applied to depression, 
and the added value of MDP demonstrates that it has the 
capacity to make dynamic comparisons of more interven-
tions over time than would a traditional STM.

Our study is subject to several limitations. First, we 
merely analyze the potential use of MDP for depression in 
theory. In real-world practical settings, the sequential treat-
ment decision problem might be more complex. Second, 
we do not assess the quality of each paper, as our main aim 
is to explore a model of optimizing decision treatment for 
depression, rather than to analyze the existing publications 
systematically. Moreover, our search was limited to publica-
tions written in English. While we are relatively confident 
that we identified most existing HE models for depression, 
we are less certain about our coverage of MDP applications 
in healthcare, as there is a long list of journals in which such 
applications could potentially be published. Furthermore, 
the MDP structure is difficult to identify when it is not ade-
quately described or when it is included as a component of 
a hybrid model. Third, our review of HE decision models is 
relatively brief and focused only on aspects that are relevant 
to the aims of our study. For a complete overview of exist-
ing models and their characteristics, other more extensive 
reviews are available [80, 81].

Sequential decision making in depression treatment is a 
difficult problem that has given rise to a large volume of 
research. While some trials have investigated the appropriate 
type of treatment for patients with depression [82, 83], opti-
mization through a formal simulation modeling approach 
for depression has yet to be conducted. The repeated choice 
of optimal sequential treatment decisions (e.g., remain with 
the current intervention, change to another intervention, or 
stop treatment) could also help to identify the best treatment 
duration, based on individual characteristics and a prede-
fined objective.

Recently, a new methodological framework known as 
whole disease modeling (WDM) has attracted attention. 
This framework is characterized by its ability to reflect deci-
sions occurring at multiple points within the entire clinical 
trajectory of a disease. As with MDP, it aims to support 
decision making throughout the clinical trajectory. In con-
trast, however, WDM emphasizes macro-level HE evalua-
tion considering all relevant aspects of the disease and its 
treatment from the preclinical phase until death at the sys-
tem level (e.g., of a national healthcare system). Like MDP, 
its decision node is transferable across the entire process, 
as opposed to the single decision node in conventional HE 
models. At the same time, however, MDP is suitable for 
supporting decisions concerning a sequence of treatment 
decisions that support optimal clinical treatment at the 
individual level, whereas WDM would not usually allow 
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treatment decisions to be changed based on patient charac-
teristics within a short period. More specifically, the scope 
of a WDM is usually wider, while its depth is lower.

The current study provides a review of MDP applications 
within the field of healthcare and demonstrates that the MDP 
has the potential to steer the optimization of sequential treat-
ment to aid personalized treatment decisions in the treatment 
of depression. This could potentially inspire healthcare deci-
sion makers, modelers, and the research community with 
regard to optimizing the allocation of healthcare resources.

6  Conclusion

The MDP has been successfully used to address healthcare 
decision-making problems, especially for those involving 
sequential treatment decisions. For depression, existing 
STMs have potential for fitting into the MDP approach, 
thereby laying a solid foundation for developing an MDP 
for depression. This approach might be better than STM at 
depicting continuous treatment decision making. In addition 
to supporting clinicians by offering an optimal sequential 
treatment plan over time, this model also provides informa-
tion about the best timing for starting and ending treatment 
for heterogeneous patient groups. As in current practice, 
clinicians lack decision rules on what to do for each patient, 
when, and in which order. We conclude that the MDP is a 
potentially powerful model for optimizing sequential treat-
ment in depression and for finding the optimal treatment 
duration for individuals.
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